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ON THE VIBRATIONS OF THREE-DIMENSIONAL ANGLED PIPING
SYSTEMS CONVEYING FLUID

Chol Hui Pak*, Sung Chul Hong* and Young Suk Yun**

(Received March 18, 1991)

The vibrations of three dimensional angled pipe systems conveying fluid are studied by using the finite element method.
Exteneded Hamilton’s principle is applied to derive the equations of motion. The characteristic matrices consisting of inertia,
stiffness, and Coriolis terms are derived by variational method, in which the effects of the internal flow velocity and pressure are
considered. The change of dynamic characteristics of the piping system due to the variation of flow velocity, pressure and the
geometry of the system is investigated. As a result, it can be found that the natural frequency of the system decreases generally
as the flow velocity and pressure increase and that the tendency is more significant as the geometry of the system is similar to the

straight pipe.
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1. INTRODUCTION

The internal flow induced vibration problems occurs fre-
quently in the fields of oil pipeline, nuclear reactor, and
missile fuel lines. As the flow velocity and pressure change,
the change of dynamic characteristics of these piping system
have been interested, because the unwanted vibration and
instability of the system may occur at a certain exciting
frequency.

Some studies in this field are performed by finite element
method. Mote(1971) studied the vibration and stability of
cantilever pipe by FEM using Ritz method, Hill and Davis
(1974) investigated the vibration of the pipe with constant
curvature by FEM using Galerkin’s method, and recently
Kohli and Nakva(1984) analyzed the straight and curved
tubes conveying fluid by means of straight beam finite ele-
ments.

In this paper, the piping systems which are constructed in 3
dimensional space are analyzed by FEM, using variational
method, in which it is considered that the finite elements have
total 12 degrees of freedom. The mass, Coriolis, and stiffness
matrices are derived by variational method and static and
dynamic analysis are performed. Through some examples,
the relationship between natural frequencies and flow veloc-
ity is obtained. To verify the obtained result, the results
obtained by presented method are compared with those by
theoretical approach.

2. GENERAL THEORY

2.1 Model of Piping System
The piping system considered in this paper consists of
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n straight pipes joined together by n-1 rigid elbows, and the
both ends are clamped, as shown in Fig. 1. The elbow parts
are idealized as a very short massless rigid part in the
viewpoint that the length of the elbows is very short when it
is compared with that of straight pipes. The piping system is
conveying the fluid of velocity ¢ and mass per unit length m,.

In this analysis, the effects of gravity, shear deformation
and rotary inertia are neglected. And it is assumed that the
flow of fluid is constant, pressure drop is negligible, and the
deflections are small.

2.2 Equations of Motion of Finite Elements

The piping system may be represented by a sum of the n
dividual finite elements. The finite element in local coordi-
nates is shown in Fig. 2.

In Fig.2, j and k represent the node points of finite element
(e}. The each node point has 6 degrees of freedom which
consist of 3 linear displacements x,, ¥», 2» and 3 rotational
displacements &, 6y, 6.. Therefore the finite element (e) has
the total 12 degrees of freedom and the displacement vector
{8} may be represented by

{0} = {82,819+ 812, Oixs s B3+ Oizs Oy Oz Oxs Oy Oz} ™ (1

The equations of motion of the finite element (e) may be
derived by using the extended Hamilton’s principle

[ (OTo = 6Vi+ 6T+ 6Wpr— 8Win)dt =0 @)

where T, is kinetic energy of the pipe, V, a potential energy
of the pipe, 7, a kinetic energy of the fluid, W,,. is a work of
pipe done by pressure, W,, a potential energy due to nodal
forces, respectively. The corresponding terms are represented

in the form
oTy=o([ Gl 55 ) +m 5 )+ ml G Nrax) @

t
sVo=3([ 1{EAP( o)+ Er(5) - er(G8)
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Y axis, respectively.
Let’s define the field variables of the form

ulx, t) =[N1(x)]{Ue(t)} v(x, t) = [Nz(x)]{vff(t)} (4)
w(,t) = (N We(®)}  B(x, =M Hoe (D)}

where the displacement vectors of finite element (e) are

{Ue(D)}={8sx, Onx}”

{Ve(t)}:{ajyr gfb 61!,\” ng}T

{We(t)}:{6j2y Oy, Oras Hky}r (5)
{¢e(t)}:{6jm ﬁkx}r

and the interpolation functions [N:(x)](i=1,2,3) are

Fig. 1 The model of the system

2 2 2 [Nl(X)]:[l‘"‘L 'D‘c“]
+GJ(@) +P.w[(a—”) +(@-) ) Ly L
(Ne(x))=01— +2 MO S
9—2 3U> 2 2 L 3 Le LQZv
V‘_f_haﬁ -7 27
+(%%L+C >}dx] Le L. 1‘( Le )
P 2 [Ns(X)]—[l“L3+L3y »
OWore= 8[.£ 7PA{<T9;) +(7xui) bx) 3x*  2x° x* x3 )
8 Wpn= — 8( Prxtt (0) + Paxtt (Le) + Py (0) B (i > ©
+ Pkyv (Le) + P,-xw (0) + szw (Le)
. ~dv(o) By inserting the Eq. (4) into the Eq.(2), we can obtain the
+ Mixp(0) + Mg (Le) + My, equations of motion of a finite element (e) in local coordinate

+th8v(L)+M1y8w(o)+M aw(L)] ) .
M)A S+ (D)} + (K)e{e)={Pe}

12x12  12x1 12x12  12x1 12x12 12x1 12x1

(N
where ¢ is a fluid velocity, m, a pipe mass per unit pipe
length, m, a fluid mass per unit pipe length, p a fluid pressure,
J. a tortional inertia, A an internal area of the pipe, A, an
area of the pipe, EI’ and EI* stiffness coefficients, GJ a
tortional inertia coefficient and Px. an initial tension force in —(D._ P D. M. ) r
the finite element (e) of the pipe. And the coordinates u,v,w, (e} = Poss Py Pies Moo Mo Mo P Pasn P M M Mie)
and ¢ represent a logitudinal displacement, a bending dis-
placement in xy plane, a bending displacement in zx plane,
and a rotational displacement with respect to the longitudinal

where {P.} are nodal forces of the finite element (e) of the
form

(8)

and the mass, Coriolis and stiffness matrices are as follows.

2
AL o 0 0 o -k 0 0 0 0
-0 0 6L-tD) 0 el g 0 0 6L~ 1)
e
-2 o L 0 ) I 0
2L5G 26
T 0 0 0 0 0 i) 0 0
2LV, 6L o LeVr
uLe-=5H 0 0 0 (6Letqp) 0 QLT 0
a-2ebny o Lt 0 0 0 arz+ Ll
= EL 15 10
e~ 13 2
Le Symmetric -‘—4—}‘—' 0 0 0 0 0
_L2V
a1y 0 0 (~6Le+-12)
_L2v (bl
- el 0
2
ey 0
2LV,
ap-Hdn
LY,
-tk

where V;—(m,c +pA— Pe) LY/ EI
1=rr=p=%
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140 0 0 O 0 0 70 0 0 0 0 0
156 0 0 0 22L. 0 54 0 0 0 —13L.
156 0 —22L. 0 0 0O 54 0 13L. O
1401 701
A 0 0 0 0 0 a 0 0
42 0 0 0 —13L. 0 —3L% 0
(M= (mp+my) Le 4L 0 13L. O 0 0 —3L%
420 140 0 0 0 0 0
Symmetric 156 0 0 0 —22L.
156 0 22L. O
1401
2 0 0
412 0
4L%
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 6L. 0 30 0 0 0 —6L.
06 0 —6L. 0 0 0 30 0 6L. 0
0 0 0 0 0 0 0 0 0
0 0 0 0 —6L. 0 —L% 0
_ mysC 0 0 6L O 0 0 -1z
(DJe="3 00 0 0 0 0
Skew-symmetic 0 0 0 0 6L,
0 0 —6L. 0
0 0 0
0 0
L 0
2.3 Eguatmng of motloq of the system ' (M) = é (M)., symmetric (6n+6) X (67+6)
Equation(7) gives expression of equations of motion of a e=1
finite element (e) in local coordinates. Therefore it is neces- (D)= é (D)., skew—symmetric (6%+6) X (62+6)
sary to transform the coordinate to represent equations of el
motion in global coordinate given by (K) :eZ_Jl[I?]e, symmetric (6%+6) X (6n+6) 10)

{ge}: (7] {62}: ( T]T{ae}
(K)e= (T (K)(T)
(M3e=(T)"(K)e(T)
(D)e=(T1T(D)AT)

{P}=(T)"{P.}

The superposition of all transformed finite element matrices
(M., [K]e, [D]. results in the equations of motion of the
total system

()(8}+ (D)8} + (KI5} =(P) )
where
’Ym
aiy
4, ‘P”ky
8y j Sy
& (E) ’ Sux X
?—7& ‘‘‘‘‘‘‘‘‘‘‘ <"
"’/z LI i Le ’ka k o
/ 6;s s
zm Xm,¥m.Zm - local coordinates

Fig. 2 Finite element model degree of freedom

{8}={0}s+{8}a (6n+6)x (1)
{P}={P}s+{P}s, (6n+6)x (1)

where n is a number of element, subscripts s and d represent
static and dynamic quantities, respectively. The Eq. (9)
consists of the static equilibrium equations and dynamic
equations. To separate the static equilibrium equations and
the dynamic equations in Eq. (9), insert Eq. (10) into Eq. (9),
then we can obtain the static equilibrium equation

(K){6)s={P)s (11)
and dynamic equations
U8}t (DY 8+ (R 8)a={P)a={0) (12)

2.4 Static Analysis
In Eq. (11), the stiffness matrix [K] is represented by

(B)= 2 (K)o~ (mc*+ pA— Pr) (K)e)

where [K]..r is a matrix derived from the elastic characteris-
tics of the pipe and [K.. is a matrix derived from the
centrifugal force and pressure of fluid and the initial tension
force. The initial tension force is a static force applied to the



ON THE VIBRATIONS OF THREE-DIMENSIONAL ANGLED PIPING SYSTEMS CONVEYING FLUID 89

system when the system is in the static equilibrium state and
given by

xe ™ EAP (Orx— ajx)

e

The displacements and forces at the static equilibrium state
are determined by inserting the boundary conditions and the
resultant forces at elbow parts. The resultant forces occur
due to the momentum changes and pressure when the fluid
passes by the elbow parts. The forces act in the plane con-
stituted by two neighboring straight pipes and the magnitudes
are determined by the fluid velocity and pressure and the
curved angles. As an example, when the geometry of the
piping system has form shown in Fig. 3, the nodal forces P,
and P; are

Z)“ 1+cos a
P2y 0
=+ | P |_ sin &
{PZ}S_ @zx h Rl 0 9,
MZy 0
M. 0
Pix —cos & (1+cos @)
Psy sin @,
=1 | Pa | —sin a1 (1+cos @)
{Pa}s“ @3:( - RZ 0
May 0
M. 0

where

Ri=(mm?+pA) (1 +cos @), i=1,2,

2.5 Dynamic Analysis
After inserting boundary conditions into Eq. (12), we can
obtain the equation

(M){8)at (DY 8)a+ (RN §)a={(0} (13)
Since this Eq. (13) is an equation of free vibration of a

conservative gyroscopic system, the natural frequencies are
real value(Meirovitch, 1980). To solve the Eq. (13), let

Fig. 3 The equivalent resultant forces acting on the angled parts

{8)={&)
then Eq. (13) becomes
{Z}=(S)(2) (14)

where

| é _ (0] )
{Z}‘{ :?}’ “*Lum*ua ~U)(D) }
therefore we can obtain the natrual frequencies and mode

shapes by solving the characteristic equation of

A =(SH{a}=0 (15)

On the other hand, when the mass ratio — 7% is small, the
mp + Wy

skew-symmetric matrix [D] does not affect largely on the
natural frequencies (Chen, 1972 ; Chen, 1973 ; Hill and Davis,
1974). This leads to the relation

[M]{é\}d‘*‘[kj{g}d:{()}

Therefore,, we can obtain the natural frequencies and mode
shapes by solving the characteristic equation of

((RK)~ (M) {a}=0 (16)

3. NUMERICAL EXAMPLES

By some examples, the dynamic characteristics of piping
system are investigated. The flowchart for computation is
shown in Fig.4. As an example, the piping system shown in

(START)

| INPUT DATA [
[construct [K]e, M)., [D]. and [T].]‘——-

@nsform [K).,[M]. and [B].]

[Assemble (K], [M] and [5]]

YES

NO
[ Calculate @ and [a)]

STOP

(END )

Fig. 4 Flow-chart of the computer program for the pipe system
conveying fluid including initial tension forces
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Table 1 Material properties of copper pipe

E 124.110 X 10°(N/m?) J 14.237x107°(m*)

G 46.197 X 10°(N/m?) Jo 13.790x107°(Kg/m?)

do 19.050 X 1073 (m) my | 0.234 (Kg/m)

d; 17.250 X 107 (m) mp | 0.459 (Kg/m)
P IF | 2.1180 X 10°% (m*) p 10.0 (N/m?)

Table 2 global coordinate values of the nodal points

Node point X Y VA

1 0 0 o

2 L. (0] 0

3 2L, o 0

4 2L.—L. cosa 0 —L. sina

5 2Le—2Lc cosam (&) —2L. sina

6 2L.~2L. cos o —L. sina —2Le sinm
+L. cos o cos & + L. sina cos &

7 2Le —2Le cosan | —2Lc sin e —2Le sinm
+2Lecos an cos +2Lesin a cos e

Fig.3 is considered.

3.1 Input Data

The piping system is made of copper pipes which have the
material properties and dimensions tabulated in Table 1.
The positions of node points in global coordinates are given
in Table 2.
The output is represented by means of dimensionless fre-
quency

Q= [.ml’glm/]]/ZLZw

and dimensionless velocity

c=[ 7] Le

3.2 Examples and Results

Firstly, to verify the obtained results, the change of natural
frequency of piping system which consists of two straight
pipe and one elbow, with the angle 135° according to flow
velocity change is obtained by presented method and theoreti-
cal approach (Hong, 1987), and plotted in Fig.5. There are
good agreements between them. As the flow velocity and
pressure increases, the natural frequency decreases and the
static instability buckling phenomenon occurs at critical
velocity. The relations between frequencies and velocity with
respect to the change of geometry of the system are found
and plotted in Fig.6,7,8. We can find the fact that the critical
velocity is infinite when the angles of the piping system are
all 90° from Fig.6. However, when the angle of the piping
system is not 90°, the natural frequencies are reduced as the
flow velocity increases, and the critical velocity exists.

Blevins (1977) derived the equation

.Q(C)Z.Q(O)[l—-g;:]“’ (17)

ELEMENT : 6
NODE : 7
— < D.0.F. 42
EIGENVALUE : 30
ELEMENT LENGTH : 0.4 m
35 o F.E.M.
G
>_. ~—  Theory (Hong,1887)
O 30
=z
ui
o
©@ 25
L
o
L.
w20
%)
L
1
=z 15
[}
%)
= 10
Ll
=
a s
0
s 1 2 3 4 S 6

DIMENSIONLESS VELCCITY, C

Fig. 5 Comparison of theorical result (Hong, 1987) and F.E.M.
result of fundamental frequency for the angle of 135

ELEMENT : 6
NODE 27
D.0.F. : 42
EIGENVALUE : 30

ELEMENT LENGTH : 0.6 m

0 1st freq.
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=
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b
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DIMENSIONLESS VELOCITY, C
Fig. 6 The fundamental and second frequency of vibrations of
the angled pipe conveying fluid for the angle of 90°
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Fig. 7 The fundamental and second frequency of vibrations of Fig. 8 The fundamental and second frequency of vibrations of
the angled pipe conveying fluid for the angles of 120° the angled pipe conveying fluid for the angles of 150
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Fig. 9 Comparison of Blevins(1977) and F.E.M. result of funda- Fig. 10 Comparison of Blevins(1977) and F.E.M. result of funda-
mental frequency as a function of flow velocity for the mental frequency as a function of flow velocity for the

angles of 120° angles of 150°
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which denotes the relations betweens frequency and velocity
of a system with only a straight pipe. It can be shown that the
results obtained from the frequency equation are good
approximate relation, as shown in Fig.9 and Fig.10. It may be
considered in the viewpoint of the designer’s concept that the
frequency equation can be used for approximate analysis of
the system’s dynamic characteristics with good accuracy
within 2% error in the range C<0.5C.r and 10% error in the
range C<0.9C,,, even if the systems do not consist of only a
straight pipe.

4. CONCLUSIONS

The vibration of three dimensional angled piping systems is
analyzed by the finite element method. As a result, we can
obtain the following conclusions :

(1) The vibration analysis for investigating the effects of
flow velocity and pressure on dynamic characteristics of the
system is performed.

(2) When the angle of curved part is obtuse, as the flow
velocity or pressure increases, the fundamental frequency
decreases, and the critical velocity or pressure become infi-
nite, therefore the buckling phenomena do not occur.

(3) If the angles are obtuse, as the angles approach to 180",
the buckling phenomena occur at the relatively low flow
velocity or pressure.

(4) Through the investigation of the relationship for flow
velocity versus natural frequencies, it can be shown that the
approximate equation

2O =20 1--5 1"

(where £(0) =natural frequency when the velocity is zero,
C =flow velocity, C.r =critical velocity of the system) can be
used with 109% error within the range of flow velocity C<
0.9Cr.

(5) The developed computer program may be used to
analyze the vibration of piping structure with the other
general purpose program in which the other effects for piping
systems are considered.
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